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A finite difference approach has been implemented to study blood flow in a 
bifurcated artery with a single mild stenosis under the effects of gravitational 
force. Streaming blood along the vessel segment is assumed to be micropolar, 
incompressible, laminar, unsteady and fully-developed. Geometry of the 
blood vessel is modelled as a finite bifurcation. An unsteady two-dimensional 
nonlinear model is taken where the governing equations are considered 
together with significant gravity term. The governing equations are solved 
using Matlab programming. Axial velocities and some blood flow 
characteristics are obtained and presented in graphical form. From the 
results, increment of dimensionless gravity parameter value yields lower 
axial velocity along the bifurcation segment, as well as higher magnitude of 
outer wall shear stress and lower magnitude of inner wall shear stress. At the 
branching junction, distortion happens which could lead to various 
consequences such as multiple stenosis. While gravity term is considered in 
the study, increment of viscosity yields lower axial velocity and wall shear 
stress along the vessel segment. These show that gravitational acceleration 
term and the branching structure are two substantial components to be 
considered in blood flow model. 
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1. Introduction

*Cardiovascular disease has been noticed as one
of the major illnesses around the world. Common 
cardiovascular diseases such as hypertension, 
angina, stroke, vessel thrombosis and so on are often 
related to abnormality, disorder and malfunction of 
blood vessel. Among the illnesses occurring through 
blood vessels, constriction in artery has been found 
to be one of the most significant factors. This 
segmental narrowing is developed in inner lining of 
vessel walls by arterial plaque, which is usually 
made up of deposits of fatty substance, cholesterol, 
calcium, fibrin or other cellular waste products. As a 
result, blood clots or thrombosis would form. Blood 
functions as a system of transportation, regulation 
and protection in human body. This situation then 
leads to abnormal flowing of blood, hence affect 
function of blood as protection, transportation and 
regulation in human body. Also, this kind of 
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unhealthy deposition or stenosis in a vessel tends to 
raise blood pressure and reduce vessel elasticity. 
Due to inadequate blood supplement, infected part 
of the body will get numbness. More seriously, 
stroke may occur if the blood supply is cut off to the 
brain. Furthermore, this abnormality of blood flow 
would probably cause the present stenosis to further 
get worse by forming additional constrictions and 
coupling effects (Ku, 1997). Hence, numerous 
medical studies have been carried out to further 
understand cardiovascular blood flow and stenosis 
in blood vessels.  

Blood used to be modelled as Newtonian and 
non-Newtonian fluid by adopting several justifiable 
assumptions. Chakravarty et al. (1996) pointed out 
that blood behaves as Newtonian fluid when it flows 
through wider arteries such as the aorta; and 
oppositely, non-Newtonian behaviours are observed 
in tinier arteries. Eringen (1966) introduced a theory 
of a specialised non-Newtonian fluid, namely the 
micropolar fluid, which considers the involvement of 
micro-structure, to model and describe some kind of 
fluid suspensions. While blood is a composition of 
various particles such as erythrocytes, leukocytes, 
thrombocytes, plasma, and other carried substances, 
it is sufficient to be categorised as a kind of 
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suspension. Micropolar fluid model considers the 
natural characteristics of blood compound 
suspension where each blood particle can affect the 
flow (Lukaszewicz, 1999). These mathematical bio-
mechanical studies have provided remarkable and 
extensive advancement in the field of cardiology 
(Ariman et al., 1973; Devanathan and Parvathamma, 
1983; Ghosh, 1986; Muthu et al., 2003; Abdullah and 
Amin, 2010; Ikbal et al., 2011; Chakravarty and 
Mandal, 2013). Despite, in current clinical field, 
constrictions and abnormal behaviours of blood in 
vessel is still commonly observed using various 
invasive methods. Thus, persistency in mathematical 
modelling of blood flow and stenosis is important to 
give deeper understanding on blood flow rheology, 
and provide more ideas on the hemodynamic. One 
can even able to speculate the cause of some 
common phenomena such as stenosis overlapping 
and restenosis by investigating the blood flow 
characteristics. 

On the other hand, gravitational force is one of 
the fundamental forces regulating biological and 
physiological systems. From previous researches, it 
is interesting to find out that gravitational 
acceleration does not only differ on earth and in 
space. On the earth itself, different altitude and 
latitude will give different values of gravity 
acceleration (Payne, 2004). Also, during postural 
changes, blood assembles at certain part of body 
because of gravity attraction, and this will lead to 
increment of blood pressure at that body part 
(Olufsen et al., 2005). However, not many of the 
previous studies included gravity as a body force in 
modelling blood flow in arteries, thus this becomes 
the main motivation to this research. Throughout 
this research, variation of gravitational acceleration 
is taken into consideration to provide deeper insight 
about its effects on blood flow in constricted arteries 
(Burrowes and Tawhai, 2006; Burrowes et al., 2005). 

Apart from quantitative factors such as gravity 
force, physical factors such as vessel structures are 
also found to be one of the major factors affecting 
blood flow behaviour in human cardiovascular 
system (Lou and Yang, 1993). Blood vessels are a 
series of branches expanding throughout the body, 
therefore bifurcation structure is very common 
among the branching system (Chakravarty and 
Mandal, 1997). This kind of structure has been 
clinically proven to be significant on atherogenesis, 
which means the augmentation of arterial wall 
deposition. This phenomenon is also clearly 
remarked where clinical investigations point out that 
arterial stenosis often occurs at bifurcated vessel 
regions. Due to this, branching structures have 
become one of the interested and important aspects 
in modelling blood flow to find out properties of flow 
rheology passing through vessel bifurcations (Shaw 
et al., 2009; Tan et al., 2014). In this current 
research, blood flow is modelled as micropolar fluid 
and its effects when passing through an artery 
bifurcation under variation of gravity acceleration is 
investigated. 

Despite researches about blood flow in living 
body have been carried out since decades, 
characteristics of blood flow in cardiovascular 
system has not yet been developed and interpreted 
thoroughly. This is because apart from quantitative 
parameters, too many subjective factors are affecting 
behaviours of human anatomy, including 
environment and even the internal individual 
emotions. However from the angle of mathematical 
modelling, even though a lot of assumptions need to 
be made, such analyses progressively give larger 
picture to successfully relate to clinical 
circumstances. Thus, this study formulates problem 
regarding the effects of gravitational acceleration, 
structure of bifurcated artery, involvement of a 
single stenosis at the parent branch, and modelling 
of blood flow as micropolar fluids. The finite 
difference method is used in this study; while 
streaming blood is assumed to be two-dimensional, 
laminar, time-dependent, and fully-developed. 

2. Geometry profile 

The geometry model of this study is a segment of 
bifurcated artery with a single mild stenosis 
occurred at parent branch. This model was first 
established by Chakravarty and Mandal (1997), 
where axisymmetric segment of artery is assumed to 
be made up of finite straight circular cylinders. In 
this study, geometry of the bifurcation segment is set 
to be dimensionless, and is described mathematically 
by Eq. 1 and Eq. 2 below. Eq. 1 is the function of 
R1(z) while Eq. 2 is the function R2(z), which are 
piecewise functions in terms of z, describing radii 
geometries of outer vessel wall and inner vessel wall 
respectively. Illustration of the geometry profile is 
shown in Fig. 1. 

Here, a and r1 are the non-constricted (non-
stenotic region) radii of the parent and daughter 
branches respectively. Curvatures are introduced at 
each junction of the bifurcation segment. This is to 
ensure the continuity of flow such that non-existent 
flow separations can be avoided. r0 and r0

′  are the 
radii of curvatures for the lateral junction and flow 
divider respectively. Besides, l0 is stenosis length; d′ 
denotes the segment length from the axial origin to 
the stenosis; θ is the angle of bifurcated branch 
horizontally; τm is the maximum height of the 
stenosis. 
 

{
 
 
 

 
 
 
1 , 0 ≤ z ≤ d′

1 −
4τm

al0
2 [l0(z − d

′) − (z − d′)2] , d′ ≤ z ≤ d′ + l0

1 , d′ + l0 ≤ z ≤ z1

1 +
r0

a
− √(

r0

a
)
2
− (z − z1)

2 , z1 ≤ z ≤ z2
2r1

a
sec θ + (z − z2) tan θ , z2 ≤ z ≤ zmax

       (1) 

{
 

 
0 , 0 ≤ z ≤ z3

√r0
′ 2 − (z − z3 − r0

′ ) , z3 ≤ z ≤ z3 + r0
′ (1 − sin θ)

r0
′ cos θ + z4 , z3 + r0

′ (1 − θ) ≤ z ≤ zmax

       (2) 
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Fig. 1: Geometry profile 

 
Along the z-axis, z1 is the starting point of the 

lateral junction, z2 is the ending point of the lateral 
branching junction, z3 is the apex, and zmax denotes 
the finite length of the segment. Further, parameters 
comprised in the above geometry (1) and (2) are 
defined as follows: 
 

z2 = z1 + (1 −
2r1

a
sec θ)

sin θ

cosα−1
                   (3) 

z3 = z2 + q                     (4) 
z4 = [z − z3 − r0

′ (1 − sin θ)] tan θ                   (5) 

r0 =
a−2r1 sec θ

cos θ−1
                     (6) 

r0
′ = (z0 − z2)

sin θ

1−sinθ
                    (7) 

 

with the choice of q = 0.3, where q is the distance 
from z2 to the bifurcated apex lying between 0.1 and 
0.5. Furthermore, R1(z) and R2(z) are denoted to be 
time-dependent. Hence, the time-variant geometry 
profile is given by multiplying R1(z) and R2(z) with 
respective periodic functions of time, a1(t) and b1(t) 
as shown below, to describe the wall motion, such 
that R1(z, t) = R1(z) ∙ a1(t), R2(z, t) = R2(z) ∙ b1(t). 
 

a1(t) = 1 − (cosωt − 1)ke
−kωt                    (8) 

𝑏1(𝑡) = 1 𝑎1(𝑡)⁄                      (9)  
 

here, 𝑘 is a constant; 𝜔 = 2𝜋𝑓𝑝 is the angular 

frequency in which 𝑓𝑝 is the pulse frequency equals 

1.2Hz. 

3. Governing equations 

In this study, streaming blood that passes 
through the segment of artery bifurcation is 
considered to have suspended rigid and non-uniform 
particles described by micropolar fluid model. It is 
set to be two-dimensional, incompressible, laminar, 
unsteady, and fully-developed. 

The set of equations governed in this study 
consists of the continuity equation, the radial 
momentum equation, the axial momentum equation 
and the angular momentum equation, which are 
derived from the conservation of mass, conservation 
of linear momentum and conservation of angular 
momentum respectively. Conservative forms of the 
governing equations are: 
 

𝜕𝑤̃

𝜕𝑧
+
𝑢

𝑟̃
+
𝜕𝑢

𝜕𝑟̃
= 0                   (10) 

𝜕𝑢

𝜕𝑡
+
𝜕𝑢2

𝜕𝑟̃
+
𝜕(𝑤̃𝑢)

𝜕𝑧
+
𝑢2

𝑟̃
= −

1

𝜌

𝜕𝑝

𝜕𝑟̃
+
𝜇+𝜅

𝜌
 (
𝜕2𝑢

𝜕𝑟̃2
+
1

𝑟̃

𝜕𝑢

𝜕𝑟̃
+
𝜕2𝑢

𝜕𝑧2
−

𝑢

𝑟̃2
) +

𝜅

𝜌

𝜕𝜔̃

𝜕𝑧
+ 𝑔 𝑠𝑖𝑛𝜙                          (11) 

𝜕𝑤̃

𝜕𝑡
+
𝜕(𝑢𝑤̃)

𝜕𝑟̃
+
𝜕𝑤̃2

𝜕𝑧
+
𝑤̃𝑢

𝑟̃
= −

1

𝜌

𝜕p̃

𝜕𝑧
+
𝜇+𝜅

𝜌
 (
𝜕2𝑤̃

𝜕𝑟̃2
+
1

𝑟̃

𝜕𝑤̃

𝜕𝑟̃
+
𝜕2𝑤̃

𝜕𝑧2
) +

𝜅

𝜌
(
𝜕𝜔̃

𝜕𝑟̃
+
𝜔̃

𝑟̃
) − 𝑔 𝑐𝑜𝑠 𝜙                  (12) 

𝜌𝐼 (
𝜕𝜔̃

𝜕𝑡
+ 𝑢̃

𝜕𝜔̃

𝜕𝑟̃
+ 𝑤̃

𝜕𝜔̃

𝜕𝑧
) = −𝜅 (2𝜔̃ +

𝜕𝑤̃

𝜕𝑟̃
−
𝜕𝑢

𝜕𝑧
) +

𝛾 (
𝜕2𝜔̃

𝜕𝑟̃2
+
1

𝑟̃

𝜕𝜔̃

𝜕𝑟̃
−

𝜔̃

𝑟̃2
+
𝜕2𝜔̃

𝜕𝑧2
)                  (13) 

 

Further, as required in the finite difference 
method, a pressure gradient needs to be defined 
before proceeding to the next steps. Blood is 
pulsatile in nature because due to pumping pace of 
heart. A cycle of heart pumping consists of a systolic 
phase and a diastolic phase. Systolic phase is where 
heart contracts and produces high arterial pressure, 
enabling oxygenated blood to be transferred to each 
cell; while diastolic phase is the relaxation of heart 
when arterial pressure is low. This set of actions of 
heart is represented by a pressure gradient at the 
axial direction. As suggested by Burton (1966), for 
human being, the pressure gradient can be well 
expressed by a cosine function as follow: 

 

−
𝜕𝑝

𝜕𝑧
= 𝑎0 + 𝑎1 𝑐𝑜𝑠 𝜔̃𝑝 𝑡̃                  (14) 

 
In this prescribed pressure gradient, 𝑎0 is the 

constant component of the pressure gradient, 𝑎1 is 
the amplitude of the fluctuating pulsatile component 
(gives rise to the systolic and diastolic pressure), 
𝜔𝑝 = 2𝜋𝑓𝑝 with 𝑓𝑝 is the pulse frequency. 

Non-dimensionalization procedure needs to be 
carried out to ensure the terms having same 
dimension which also match with vessel geometry 
profile. As suggested by Muthu et al. (2003), a 
parameter 𝜛 is involved, which represents 
frequency of the unsteady flow in unit Hertz (cycle 
per second). Meanwhile, other related dimensionless 
parameters are introduced to represent the involved 
viscosity terms, micropolar fluid terms and also the 
gravity term. The dimensionless representations are 
listed as below: 
 

𝑡 = 𝜛𝑡̃  ,  𝑟 =
𝑟̃

𝑎
  ,  𝑧 =

𝑧

𝑎
  ,  𝑢 =

𝑢

𝜛𝑎
  ,  𝑤 =

𝑤̃

𝜛𝑎
, 

𝜔 =
𝜔̃

𝜛
  ,  𝜔𝑝 =

𝜔̃𝑝

𝜛
  ,  𝑝 =

𝑝

𝜇𝜛
,  𝐴0 =

𝑎𝑎0

𝜇𝜛
  ,  𝐴1 =

𝑎𝑎1

𝜇𝜛
, 

𝐾 =
𝜅

𝜇
  ,  𝑀 =

𝛾

𝜇𝑟0
2  ,  𝐽 =

𝐼

𝑎2
  ,  𝛼2 =

𝑎2𝜛𝜌

𝜇
  ,  𝐺 =

𝑔𝜌𝑎

𝜇𝜛
 

 

After non-dimensionalisation, the dimensionless 
governing Eq. 10 and Eq. 13 together with the 
prescribed pressure gradient Eq. 14 are: 
 
𝜕𝑤

𝜕𝑧
+
𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
= 0                   (15) 

𝛼2 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

1

𝜌

𝜕𝑝

𝜕𝑟
+ (1 + 𝐾) (

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑧2
−

𝑢

𝑟2
) + 𝐾 (

𝜕𝜔

𝜕𝑧
) + 𝐺 𝑠𝑖𝑛 𝜃                 (16) 

𝛼2 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

1

𝜌

𝜕𝑝

𝜕𝑧
+ (1 + 𝐾) (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
+

𝜕2𝑤

𝜕𝑟2
) + 𝐾 (

𝜕𝜔

𝜕𝑟
+
𝜔

𝑟
) − 𝐺 𝑐𝑜𝑠 𝜙                 (17) 
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𝛼2𝐽 (
𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑟
+ 𝑤

𝜕𝜔

𝜕𝑧
) = −𝐾 (2𝜔 +

𝜕𝑤

𝜕𝑟
−
𝜕𝑢

𝜕𝑧
) +

𝑀 (
𝜕2𝜔

𝜕𝑟2
+
1

𝑟

𝜕𝜔

𝜕𝑟
−

𝜔

𝑟2
+
𝜕2𝜔

𝜕𝑧2
)                  (18) 

−
𝜕𝑝

𝜕𝑧
= 𝐴0 + 𝐴1 𝑐𝑜𝑠𝜔𝑝𝑡                  (19) 

4. Initial and boundary conditions 

The initial and boundary conditions are adapted 
from Abdullah and Amin (2010), and Chakravarty 
and Sen (2005) to fit the current model. Initially, no 
flow takes place when the system is at rest hence: 

 

𝑢(𝑟, 𝑧, 0) = 𝑤(𝑟, z, 0) = 𝜔(𝑟, 𝑧, 0) = 0                 (20) 
 

The vessel is considered to be axisymmetric in 
this study. No radial flow takes place along the 
longitudinal axis of the parent branch.  Also, velocity 
gradient of blood flow is assumed to be zero, which 
means no shear rate at this segment. 
 

𝑢(𝑟, 𝑧, 𝑡) =
𝜕𝑤(𝑟,𝑧,𝑡)

𝜕𝑟
= 0 on 𝑟 = 0 for 0 ≤ 𝑧 ≤ 𝑧3               (21) 

 

At the wall surface throughout the bifurcation 
segment, the common axial velocity no-slip condition 
is applied; while the radial velocity is dependent on 
vessel wall motion as described by Chakravarty and 
Sen (2005). The following equations described the 
conditions at the outer and inner walls respectively, 
in which 𝛼0 = 1 for 𝑧 ≤ 𝑧3 while 𝛼0 = 𝑠𝑒𝑐 𝜃 for 𝑧 ≥
𝑧3. 
 

𝑢 = 𝛼0
𝜕𝑅1

𝜕𝑡
,  𝑤 = 0  on 𝑟 = 𝑅1(𝑧, 𝑡) ∀𝑧                 (22) 

𝑢 = 𝛼0
𝜕𝑅2

𝜕𝑡
,  𝑤 = 0  on 𝑟 = 𝑅2(𝑧, 𝑡) for 𝑧 ≥ 𝑧3                (23) 

5. Method of solution 

The governing equations are solved using explicit 
finite difference method, and are computed in Matlab 
programming software. However, transformation 
and discretization procedures need to be carried out 
before coding. Also, the radial velocity component 
will be solved analytically and then be implicated in 
the numerical solution. 

5.1. Radial coordinate transformation 

Before the governing equations are discretized, 
radial coordinate transformation is carried out to 
provide effects of immobilising the vessel walls by 
transforming radial terms into expressions that 
contain terms in coordinate 𝑥. For the current model 
of bifurcated vessel which inner and outer walls, 
radial coordinate transformation is given by 
 

𝑥 =
𝑟−𝑅2(𝑧,𝑡)

𝑅(𝑧,𝑡)
                   (24) 

 

here, 𝑅(𝑧, 𝑡) = 𝑅1(𝑧, 𝑡) − 𝑅2(𝑧, 𝑡). The transformed 
continuity equation, axial momentum and angular 
momentum equations are as follows: 

 

(𝑥𝑅 + 𝑅2)
𝜕𝑤

𝜕𝑧
−
𝑥𝑅+𝑅2

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
∂𝑤

𝜕𝑥
+ 𝑢 + (

𝑥𝑅+𝑅2

𝑅
)
𝜕𝑢

𝜕𝑥
= 0  

(25) 

𝜕𝑤

𝜕𝑡
= −

1

𝛼2
𝜕𝑝

𝜕𝑧
+

1

𝑅
[𝑥

𝜕𝑅

𝜕𝑡
+
𝜕𝑅2

𝜕𝑡
− 𝑢 +𝑤 (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)]

𝜕𝑤

𝜕𝑥
−

𝑤
𝜕𝑤

𝜕𝑧
+
1+𝐾

𝛼2
{
1

𝑅2
[1 + (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
2
]
𝜕2𝑤

𝜕𝑥2
−

2

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+

𝜕𝑅2

𝜕𝑧
)
𝜕2𝑤

𝜕𝑥𝜕𝑧
+
𝜕2𝑤

𝜕𝑧2
+

1

𝑅
[

1

𝑥𝑅+𝑅2
+

2

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
𝜕𝑅

𝜕𝑧
−

(𝑥
𝜕2𝑅

𝜕𝑧2
+
𝜕2𝑅2

𝜕𝑧2
)]

𝜕𝑤

𝜕𝑥
} +

𝐾

𝛼2
(
1

𝑅

𝜕𝜔

𝜕𝑥
+

𝜔

𝑥𝑅+𝑅2
) − 𝐺 𝑐𝑜𝑠 𝜙            (26) 

𝜕𝜔

𝜕𝑡
=

1

𝑅
[𝑥

𝜕𝑅

𝜕𝑡
+
𝜕𝑅2

𝜕𝑡
− 𝑢 +𝑤 (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)]

𝜕𝜔

𝜕𝑥
− 𝑤

𝜕𝑤

𝜕𝑧
−

𝐾

𝛼2𝐽
[2𝜔 +

1

𝑅

𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧
+

1

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
𝜕𝑢

𝜕𝑥
] +

𝑀

𝛼2𝐽
{−

𝜔

(𝑥𝑅+𝑅2)
2 +

1

𝑅2
[1 + (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
2
]
𝜕2𝜔

𝜕𝑥2
+
𝜕2𝜔

𝜕𝑧2
−

2

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
𝜕2𝜔

𝜕𝑥𝜕𝑧
+

1

𝑅
[

1

𝑥𝑅+𝑅2
+

2

𝑅
(𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)
𝜕𝑅

𝜕𝑧
− (𝑥

𝜕2𝑅

𝜕𝑧2
+
𝜕2𝑅2

𝜕𝑧2
)]

𝜕𝜔

𝜕𝑥
              (27) 

 
At the same time, the boundary conditions (20) – 

(23) are also transformed to: 
 
𝑢(𝑥, 𝑧, 0) = 𝑤(𝑥, 𝑧, 0) = 𝜔(𝑥, 𝑧, 0) = 0                (28) 

𝑢(𝑥, 𝑧, 𝑡) =
𝜕𝑤(𝑥,𝑧,𝑡)

𝜕𝑥
= 0 on 𝑥 = 0 for 0 ≤ 𝑧 ≤ 𝑧3              (29) 

𝑢(𝑥, 𝑧, 𝑡) = 𝛼0
𝜕𝑅1

𝜕𝑡
, 𝑤(𝑥, 𝑧, 𝑡) = 0  on 𝑥 = 1 ∀𝑧                (30) 

𝑢(𝑥, 𝑧, 𝑡) = 𝛼0
𝜕𝑅2

𝜕𝑡
, 𝑤(𝑥, 𝑧, 𝑡) = 0  on 𝑥 = 0 for 𝑧 ≥ 𝑧3     (31) 

5.2. Radial velocity component 

Radial velocity function should be obtained prior 
to the starting of finite difference algorithm.  First of 
all, from Eq. 25, integration with respect to 𝑥 from 
limit 0 to 𝑥 is performed on both sides. After 
simplified and rearranged, it becomes 
 

𝑢(𝑥, 𝑧, 𝑡) =
𝑅2

𝑥𝑅+𝑅2
𝑢(0, 𝑧, 𝑡) + (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)𝑤(𝑥, 𝑧, 𝑡) −

𝑅2

𝑥𝑅+𝑅2
∫ [(𝑥𝑅 + 𝑅2)

𝜕𝑤

𝜕𝑧
+ (2𝑥

𝜕𝑅

𝜕𝑧
+
𝑅2

𝑅

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)𝑤] 𝑑𝑥

𝑥

0
     (32) 

 
Then, the integral limits are expanded and 

boundary conditions are applied. The equation is 
then simplified and rearranged to become: 
 

∫ [(𝑥𝑅 + 𝑅2)
𝜕𝑤

𝜕𝑧
+ (2𝑥

𝜕𝑅

𝜕𝑧
+
𝑅2

𝑅

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)𝑤] 𝑑𝑥

1

0
=

𝑅2

𝑅
𝑢(0, 𝑧, 𝑡) −

𝑅1

𝑅
𝛼0

𝜕𝑅1

𝜕𝑡
                  (33) 

 

To equalise the above integrals and integrands, 
an arbitrary function shall be introduced such that 

∫ 𝑓(𝑥)𝑑𝑥
1

0
= 1 and 𝑓(1) = 0. From Chakravarty and 

Sen (2005), the function adopted is: 
 

𝑓(𝑥) = −4𝑥(𝑥2 − 1)                  (34) 

 
Thus, the radial velocity component equation is 

obtained as below: 
 

𝑢(𝑥, 𝑧, 𝑡) =
𝑅2

𝑥𝑅+𝑅2
𝑢(0, 𝑧, 𝑡) + (𝑥

𝜕𝑅

𝜕𝑧
+
𝜕𝑅2

𝜕𝑧
)𝑤(𝑥, 𝑧, 𝑡)  

+
𝑥2(2−𝑥2)

𝑥𝑅+𝑅2
[𝑅1𝛼0

𝜕𝑅1

𝜕𝑡
− 𝑅2𝑢(0, 𝑧, 𝑡)]                  (35) 

5.3. Finite difference scheme 

The finite difference expressions for the 
derivatives are formed by discretization techniques 
with reference to Taylor’s series expansions. The 
finite difference approximations for velocities here 
are based on central differencing in uniform 
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staggered grids; while the time derivative is 
discretized using first order forward difference 
approximation. Also, we define 𝑥 = 𝑗∆𝑥, 𝑧 = 𝑖∆𝑧 and 
𝑡 = 𝑘∆𝑡 for the bifurcated artery segment under 
investigation. 𝑘 refers to the time step, where ∆𝑡 is 
the pre-defined time increment. ∆𝑥 and ∆𝑧 represent 
the uniform width (radial direction) and length 
(axial direction) of any (𝑖, 𝑗)-th cell respectively, as 
shown in Fig. 2. 

 

 
Fig. 2: Finite difference uniform grids 

 

The axial momentum Eq. 26 and angular 
momentum Eq. 27 are discretized based on central 
difference approximations for all the spatial 
derivatives. Likewise, any spatial differential terms 
regarding the radial velocity 𝑢 are also discretized 
similarly to the above approximations. The 
equations are then rearranged to become: 
 

𝑤𝑖,𝑗
𝑘+1 = 𝑤𝑖,𝑗

𝑘 + ∆𝑡{−
1

𝛼2
𝜕𝑝

𝜕𝑧
+

1

𝑅𝑖
𝑘 [𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
− 𝑢𝑖,𝑗

𝑘 +

𝑤𝑖,𝑗
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
)] |

𝜕𝑤

𝜕𝑥
|
𝑖,𝑗

𝑘
− 𝑤𝑖,𝑗

𝑘 |
𝜕𝑤

𝜕𝑧
|
𝑖,𝑗

𝑘
+
1+𝐾

𝛼2
[

1

(𝑅𝑖
𝑘)
2 [1 +

(𝑥𝑗 |
𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
)
2

] |
𝜕2𝑤

𝜕𝑥2
|
𝑖,𝑗

𝑘

−
2

𝑅𝑖
𝑘 (x𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+

|
𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
) |

𝜕2𝑤

𝜕𝑥𝜕𝑧
|
𝑖,𝑗

𝑘

+ |
𝜕2𝑤

𝜕𝑧2
|
𝑖,𝑗

𝑘

+
1

𝑅𝑖
𝑘 [

1

𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 +
2

𝑅𝑖
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+

|
𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
) |
𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
− (𝑥𝑗 |

𝜕2𝑅

𝜕𝑧2
|
𝑖

𝑘

+ |
𝜕2𝑅2

𝜕𝑧2
|
𝑖

𝑘

)] |
𝜕𝑤

𝜕𝑥
|
𝑖,𝑗

𝑘
] +

𝐾

𝛼2
(
1

𝑅𝑖
𝑘 |
𝜕𝜔

𝜕𝑥
|
𝑖,𝑗

𝑘
+

𝜔𝑖,𝑗
𝑘

𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 ) − 𝐺 𝑐o𝑠 𝜃                 (36) 

𝜔𝑖,𝑗
𝑘+1 = 𝜔𝑖,𝑗

𝑘 + ∆𝑡 {
1

𝑅𝑖
𝑘 [𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
− 𝑢𝑖,𝑗

𝑘 +

𝑤𝑖,𝑗
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
)] |

𝜕𝜔

𝜕𝑥
|
𝑖,𝑗

𝑘
−𝑤𝑖,𝑗

𝑘 |
𝜕𝜔

𝜕𝑧
|
𝑖,𝑗

𝑘
−

𝐾

𝛼2𝐽
[2𝜔𝑖,𝑗

𝑘 +

1

𝑅𝑖
𝑘 |
𝜕𝑤

𝜕𝑥
|
𝑖,𝑗

𝑘
− |

𝜕𝑢

𝜕𝑧
|
𝑖,𝑗

𝑘
+

1

𝑅𝑖
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
) |
𝜕𝑢

𝜕𝑥
|
𝑖,𝑗

𝑘
] +

𝑀

𝛼2𝐽
[−

𝜔𝑖,𝑗
𝑘

(𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 )
2 +

1

(𝑅𝑖
𝑘)
2 (1 + (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+

|
𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
)
2

) |
𝜕2𝜔

𝜕𝑥2
|
𝑖,𝑗

𝑘

+ |
𝜕2𝜔

𝜕𝑧2
|
𝑖,𝑗

𝑘

−
2

𝑅𝑖
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+

|
𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
) |

𝜕2𝜔

𝜕𝑥𝜕𝑧
|
𝑖,𝑗

𝑘

+
1

𝑅𝑖
𝑘 [

1

𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 +
2

𝑅𝑖
𝑘 (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+

|
𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
) |
𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
− (𝑥𝑗 |

𝜕2𝑅

𝜕𝑧2
|
𝑖

𝑘

+ |
𝜕2𝑅2

𝜕𝑧2
|
𝑖

𝑘

)] |
𝜕𝑤

𝜕𝑥
|
𝑖,𝑗

𝑘
]}                 (37)  

𝑢𝑖,𝑗
𝑘 = (

𝑅2𝑖
𝑘

𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 )𝑢𝑖,1
𝑘 + (𝑥𝑗 |

𝜕𝑅

𝜕𝑧
|
𝑖

𝑘
+ |

𝜕𝑅2

𝜕𝑧
|
𝑖

𝑘
)𝑤𝑖,𝑗

𝑘 +

𝑥𝑗
2(2−𝑥𝑗

2)

𝑥𝑗𝑅𝑖
𝑘+𝑅2𝑖

𝑘 [𝑅1𝑖
𝑘 𝛼0 |

𝜕𝑅1

𝜕𝑡
|
𝑖

𝑘
− 𝑅2𝑖

𝑘 𝑢𝑖,1
𝑘 ]                 (38) 

 
The prescribed boundary and initial conditions 

(28) to (31) throughout the bifurcated artery 
segment are approximated by finite difference 
scheme as follow. 
 
𝑢𝑖,𝑗
1 = 𝑤𝑖,𝑗

1 = 𝜔𝑖,𝑗
1 = 0                  (39) 

𝑢𝑖,1
𝑘 = 0 and 𝑤𝑖,2

𝑘 = 𝑤𝑖,1
𝑘  for 𝑧 ≤ 𝑧3                 (40) 

𝑢𝑖,1
𝑘 = 𝛼0 |

𝜕𝑅2

𝜕𝑡
|
𝑖

𝑘
 and 𝑤𝑖

𝑘 = 0 for 𝑧 ≥ 𝑧3                (41) 

𝑢𝑖,𝑁+1
𝑘 = 𝛼0 |

𝜕𝑅1

𝜕𝑡
|
𝑖

𝑘
 and 𝑤𝑖,𝑁+1

𝑘 = 0                 (42) 

 

A thorough stability criterion combined from 
Markham and Proctor (1983) and Hirt (1968) is 
implemented. For the current method of solution, 
uniform steps of 𝑧 and 𝑥 are used. Hence the 
computational calculation is sufficiently stable with 
criterion: 

 

∆𝑡𝑘 ≤ 𝑚𝑖𝑛 [
∆𝑧

|𝑤𝑖,𝑗
𝑘 |
,
∆𝑥

|𝑢𝑖,𝑗
𝑘 |
]                  (43) 

 
In the numerical algorithm for the current case, 

the time interval is prescribed to be 𝑑𝑡 = 0.0001. 
The results converge pleasantly with error at order 
≈ 10−4. 

6. Results and discussions 

In order to perform the computations according 
to major physiological implications, the imposed 
parameters and quantities are: 
 
𝜌 = 1.06 × 103𝑘𝑔/𝑚3; 𝜔𝑝 = 2𝜋𝑓𝑝; 𝑓𝑝 = 1.2𝐻𝑧; 

𝜙 = 0°; 𝑎 = 1; 𝑑′ = 5; 𝑙0 = 10; 𝑟1 = 0.7𝑎; 𝜏𝑚 = 0.48; 
𝑧𝑚𝑎𝑥 = 50; 𝑧1 = 30; 𝜃 = 30°; 𝑈0 = 0.5 
 

In this study, the results are taken at 
dimensionless time 𝑡 = 30 to ensure the steadiness. 
The uniform non-staggerred grid of finite difference 
is set to have ∆𝑧 = 0.1 and ∆𝑥 = 0.025. The 
dimensionless quantities for micropolar fluid model 
are taken to be 𝐾 = 0.1, 𝑀 = 0.1, 𝐽 = 0.1 and 𝛼 = 5 
where choices of the values are adopted from 
Abdullah and Amin (2010). 𝐾 expresses the ratio of 
micropolar viscosity coefficient to fluid viscosity 
coefficient, where the inequality 2𝜇 + 𝜅 ≥ 0 and 𝜅 ≥
0 must be satisfied. Hence the value should be 𝐾 ≥
−2. 𝐾 represents the polar effect between blood 
corpuscles and fluid. Besides, 𝑀 means the 
microstructure size effect parameter, which 
represents the ratio of corpuscle to radius of the 
annulated region (Abdullah and Amin, 2010). 
Parameter 𝑀 consists of a dimensional parameter 𝛾 
which occurs in Eq. 37 as coefficient of gyro-viscosity 
in this micropolar model. On the other hand, 
parameter 𝐽 is the dimensionless form of the micro-
inertia coefficient. Muthu et al. (2003) pointed out 
that this coefficient is insignificantly small, hence 
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may be neglected from the governing equation 
system. However, some other previous researches 
appoint a very small value onto it. The Womersley 
number is implicated to represent pulsatility of 
blood and conditions of the blood vessel. According 
to Womersley (1955), choices of the dimensionless 
value roughly vary from 0 to 10 for animals, depend 
essentially on vessel size and pulse rate. Also, a 
dimensionless parameter G is introduced to describe 
the condition of external body force, where 
gravitational acceleration is involved in this study. G 
is directly proportional to gravitational acceleration. 
In this study, values of G are chosen to be 0.01, 0.1 
and 0.2. 

Numerical validation is done by comparing 
results with Abdullah and Amin (2010) who studied 
micropolar fluid flow through a straight tapered 
artery with mild stenosis. Fig. 3 presents axial 
velocity profiles along x under different conditions of 
gravity at the parent artery. Also, the axial velocity 
profiles are taken at the centre of the axisymmetrical 
trunk where x = 33. From the figure, when the 
gravitational acceleration is ignored, the current 
model shows good agreement with Abdullah and 
Amin (2010). The graphs are noticed to be 
decreasing from their individual maximums and 
finally become zero at the vessel wall as prescribed 
in the boundary conditions. As G increases, the 
individual maxima of each axial velocity line 
decreases. The expression is also described by a 
cosine function of time which involves the heart 
action. However, expression of G is not altered by 
time and hence remains the same throughout a 
complete calculation. From this graph, one can 
conclude that the additional term of external body 
force is significant in determining hemodynamic and 
nature of blood flow. 

 

 
Fig. 3: Axial velocity at the parent artery 
(J = 0.1, M = 0.1, K = 0.1, α = 5, z = 12) 

 

Fig. 4 shows axial velocity profiles along the 
dimensionless radial direction under different values 
of G at the daughter artery. The location is taken at 
z = 34, which is right after the bifurcated junction. 
The velocities start from zero at the inner wall as 
determined as the boundary conditions. Each curve 
is then increases until its individual maxima near the 

centre of artery, and then drops gradually to zero at 
the outer wall. No negative velocity is observed 
along the segment, thus no flow separation takes 
place for these cases. This may be considered as 
stenosis mildness and bifurcation angle of the 
daughter branches, which has been discussed by 
Chakravarty and Mandal (1997), where by wider 
angle of the bifurcation yields higher maximum of 
axial velocity at the apex of daughter branch. 

 

 
Fig. 4: Axial velocity at daughter artery 

(J = 0.1, M = 0.1, K = 0.1, α = 5, z = 34) 
 

Next, Fig. 5 and Fig. 6 show axial velocity profiles 
at different axial positions. They possess the same 
parameters values except for the external gravity 
force G, which is set to be G = 0.01 and G = 0.02 
respectively. Generally, these two graphs exhibit 
similar patterns, despite the velocities under higher 
gravitational acceleration yield relatively lower 
maximum values. Velocities at the upstream z = 8 
and downstream (z = 31) of parent branch remain 
close values, with slightly higher velocity at the 
downstream which is near to the bifurcation 
junction (flow steadiness after the constriction 
region is re-obtained). When passes through stenosis 
peak at z = 15, the maximum velocity drops; then 
right after the stenosis (z = 20), it rises back to a 
value which is still lower than the upstream. After 
getting steadier velocity at z = 31, the axial velocity 
continues to rise until reaching the entrance of 
branching junction at z = 32. Upon reaching the 
daughter branch, axial velocity for this graph is 
computed from the inner wall as x = 0 to the outer 
wall x = 1. At the frontal part of daughter branch, 
velocity maximum is observed near the middle, and 
then drops gradually to zero at vessel wall. But at 
posterior part of the daughter segment, velocity rises 
gradually from zero at the inner wall to reach its 
maximum near the outer vessel wall, and then drops 
drastically to zero upon reaching the outer wall. The 
expression of dimensionless G is directly 
proportional to vessel size and gravity acceleration. 
Hence, lower value of  G can represent a condition of 
microgravity. Thus, is can also be concluded that 
under lower gravity condition, blood velocity gets 
higher. Apart from heart healthiness issue which is 
not discussed here by mean of mathematical 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

x

w

 

 

No Gravity Term

G = 0.001

G = 0.1

G = 0.2

Abdullah (2008a) 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

w
 

 

No Gravity

G = 0.001

G = 0.1

G = 0.2

Chakravarty and Mandal, 1997



Yan Bin Tan, Norzieha Mustapha /International Journal of Advanced and Applied Sciences, 5(11) 2018, Pages: 24-32 

30 
 

modelling, the main reason affecting flow velocity is 
blood pressure. Since pressure parameter is not 
included in the computational method for this 
problem, we may only roughly adjudge that blood 
pressure under lower gravity conditions is lower. 

Fig. 7 and Fig. 8 present the axial velocity profiles 
across x for the parent and daughter branch 
respectively, under the condition of G = 0.2 with 
different values of K. As discussed above, K is defined 
by ratio of the dynamic microrotation viscosity to 
the dynamic Newtonian viscosity of fluid. From the 
momentum equations, once the microrotation 
viscosity coefficient is set to be zero, the 
conservation of linear momentum is then free from 
microstructure, i.e. becomes the classical Newtonian 
Navier-Stokes equations. Therefore, the dynamic 
microrotation viscosity is also a measurement to 
determine how deviated a model is from the 
common Navier-Stokes model (Lukaszewicz, 1999). 
Also, in context of blood suspension, higher value of 
κ indicates greater polar effects of microstructures. 
From both Fig. 7 and Fig. 8, greater value of K yields 
lower maximum velocity. This shows that axial 
velocity is notably influenced by microrotation of 
suspended microstructures in blood. On the other 
hand when comparing between the two figures, 
velocity at daughter branch is generally higher than 
the parent branch.  

 

 
Fig. 5: Axial Velocity at Different z positions at t = 30 

(G = 0.01, J = 0.1, M = 0.1, K = 0.1, α = 5) 
 

 
Fig. 6: Axial velocity at different z positions at t = 30 

(G = 0.2, J = 0.1, M = 0.1, K = 0.1, α = 5) 
 

 
Fig. 7: Axial velocity with different values of K at the 

parent branch with Mild stenosis 
(t = 30, G = 0.2, J = 0.1, M = 0.1, α = 5, z = 15) 

 

 
Fig. 8: Axial velocity with different values of K at 

bifurcated junction 
(t = 30, G = 0.2, J = 0.1, M = 0.1, α = 5, z = 31.5) 

 

Fig. 9 and Fig. 10 show angular velocity profiles 
across x for the parent and daughter branch 
respectively, under variation of gravitational 
acceleration. Angular velocity without considering 
gravitational acceleration is higher than all other 
conditions at both parent and daughter branches. As 
gravity force increases, the velocity decreases. 
However when value of K increases, angular velocity 
also increases under same value of gravity 
acceleration. 

 

 
Fig. 9: Angular velocity profiles at parent branch measured 

at stenosis peak 
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(t = 30, J = 0.1, M = 0.1, α = 5, z = 15) 
 

 
Fig. 10: Angular velocity profiles at bifurcated junction 

(t = 30, J = 0.1, M = 0.1, α = 5, z = 31.5) 

 
Fig. 11 and Fig. 12 present variation of 

dimensionless wall shear stress of outer wall along 
the parent artery and daughter artery respectively. 
Each figure compares wall shear stress under 
different values of dimensionless gravity 
parameter G, and also under different values of 
micropolar model viscosity ratio K. At the parent 
artery as shown in Fig. 11, maximum magnitude of 
wall shear stress occurs acutely at the beginning of 
stenosis. And then, it drops gradually until a 
minimum magnitude. According to blood flow 
nature, a slight distortion occurs here. The shear 
stress is then rises again upon reaching the non-
constricted parent trunk. At the parent artery, wall 
shear stress remains negative magnitude. At the 
entrance of bifurcation branch near z = 30, wall 
shear stress starts to drop again. But it immediately 
rises back to positive values, as shown in Fig. 12. 
Among the graphs, it is noticed that with increment 
of G, magnitude of wall shear stress also increases. 
However, these changes are too tiny thus 
insignificant for flow separations to occur. Further, 
when comparing effects of different values of K, 
lower K yields lower starting magnitude of wall 
shear stress. Despite, it fluctuates more, which 
grants higher maximum and lower minimum at the 
stenotic region, as well as the posterior segment of 
parent branch. At the junction of bifurcation, higher 
value of K causes wall shear stress to drop more 
compared to others. But, as the flow get steadier 
along the daughter branch, higher value of K yields 
higher value of wall shear stress along the outer wall. 

Fig. 13 shows wall shear stress distribution along 
the inner wall of daughter branch. This graph 
exhibits good agreement with previous research 
done by Lou and Yang (1993). The graph remains at 
positive magnitude throughout the segment for 
every case. Drastic increment and decrement happen 
near the bifurcated junction, and then it is 
maintained gradually. Generally, magnitude of inner 
wall shear stress gets lower when the gravity 
parameter gets higher. This is observed to be 
opposite from the outer wall shear stress. Besides, 

under higher values of K, the curve yields higher 
magnitude throughout the inner wall. 

 

 
Fig. 11: Dimensionless wall shear stress distributions 

along the parent artery 
(J = 0.1, M = 0.1, K = 0.1, α = 5) 

 

 
Fig. 12: Dimensionless wall shear stress for outer wall 

along the daughter brach 
(J = 0.1, M = 0.1, K = 0.1, α = 5) 

 

 
Fig. 13: Dimensionless wall shear stress for inner wall 

along the daughter brach 
(J = 0.1, M = 0.1, K = 0.1, α = 5) 

7. Conclusion 

A micropolar fluid flow model passes through an 
artery bifurcation under the effects of gravitational 
acceleration is studied. Three main aspects are 
included in the study, which is geometrical structure 
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of vessel segment, micropolar fluid behaviour, and 
the effects of additional gravity vector on axial 
momentum. The dimensionless values of difference 
in maximum wall shear stress and velocities are not 
more than ~0.5. Hence, the significance is relatively 
low. Remarkable influences are noticed along with 
different values of gravity parameter. From the 
numerical results, increment of dimensionless 
gravity parameter value yields lower axial velocity 
along the bifurcation segment. Also, increment of 
gravity yields higher magnitude of outer wall shear 
stress and lower magnitude of inner wall shear 
stress. Further, increment of K value yields lower 
axial velocity; lower wall shear stress at both outer 
and inner walls, but with greater fluctuations. At the 
branching junction, distortion happens which could 
lead to various consequences such as multiple 
stenosis. For future researches, gravitational terms 
shall always be considered in the governing 
equations. Further studies on different non-
Newtonian models of blood flow through bifurcated 
artery will also be carried out. Besides, future studies 
may consider blood pressure gradient as one of the 
parameters to be measured instead of using a 
prescribed function. 
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